Turbulent Heat Transfer to a
Rotating Disk: a Review and
Extension of Dorfman

M. C. Johnson!

Nomenelature
T = temperature
» = temperature of disk wall
T. = temperature of rotating fluid core
R = radius
Z = axial distance from rotating disk
W = angular velocity of disk
g = heat flux
Vg = velocity of fluid in radial direction
Viave = average radial velocity at a particular radius
V.. = tangential velocity of fluid in.core
Vz = velocity of fluid in axial direction
&7 = thermal boundary layer size
& = momentum boundary layer size
p = fluid density
¢p = fluid heat capacity
Pr = pc,/K{Prandtl number)
= fluid viscosity
h = film coefficient
Re = (WR ~ V.)Rp/u{Reynolds number)
St = Nu/Pr Re (Stanton number)
v = kinematie viscosity

Introduction
Heat transfer from a rotating disk to the rotating fluid adjacent to
it is defined by the boundary-layer energy equation

aT 2 g

Pep (VR >R + Vz aD * (§3]
Normally, the heat flux at the disk wall is found using Reynolds
analogy. Reynolds analogy applies when the form of the tangential
momentur equation and the energy equation are shown to be exactly
similar. As shown by Dorfman [1], the Reynolds analogy also requires
the tangential momentum and energy boundary conditions to be
exactly similar. For a rotating disk, these conditions can be generalized
as follows [2].

oT./oR _ d/3R(RV.)
T —Te RZW—RV.
2/aR(T, — T) _ O/OR(RZW ~ RV.)
Tw—T-  RIW—RV.
For the case of a disk rotating in a quiescent atmosphere, these con-
ditions become

(2)

Tw — Tw = CoR2
Tm = Cl (3)

In general, these boundary conditions are not met, and it is necessary
to Iook elsewhere for a solution of the boundary layer energy equa-
tion. .

Dorfman’s Method

Dorfman [1] considered the case of a disk rotating in a quiescent
atmosphere (V.. = 0). He integrated the boundary layer energy
equation (1) across the thermal houndary layer and iniroduced the
continuity equation, vielding
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d/dR [R j;h Ve(T — Tm)dzl - -2 4)

peplz=0

or, in the dimensionless form
1
WR3(T,, — T2)
The primary difficulty in solving this equation is the assumption
of a model for the wall heat flux, which Dorfman assumes in the fol-
lowing form

d/dR [R J; (T — T,,)dz] =S{ (4a)

& -m
q|z=0 = constant - [J: ! V(T — T.,)dz} (5)

where m is a constant to be determined experimentally.

The assumption of {5) reduces equation (4) to a separable nonlinear
differential equation. .

The actual form of Dorman’s assumption is

5t71 = A(Pr)i(Re**)™ ()

A(Pr} is a function of the Prandtl number and Re** is a thermal
Reynolds number using a weighted thermal boundary layer size as
a characteristic dimension. It is defined in the next section.

Equation (6) can be rearranged in the form

_ pcpWR(T, ~Ta) § I o7 _ —m
T APy ke(Tw-Ta j; Ve(T T""dzl
o

Substituting this expression into equation (4), separating variables,
assuming constant fluid properties and integrating, an expression for
the Stanton number can be found.

Re —m/m+1(Tw —_ Tu)mRm(m+3)!m+1
- [A(Pr)ll:"m+1

St

—m/m+]1

R
— m m+2
x[ J; (T — T2)™FIR™+24R (8)

This equation represents a general expression for the Stanton:
number. Now m and A(Pr) must be determined empirically. Although -
any data correlation could be used, it will be convenient to use one
such that the disk temperature distribution is rigidly defined. Such
conditions exist for the Reynolds anslogy.

Dorfman gives an expression for the Stanton number of a disk ro-
tating in a quiescent atmosphere for Reynolds analogy conditions
(turbulent flow) [1].

St = 0.0267 Pr04Re02 )

As shown in equation (3), the Reynolds analogy temperature dis-
tribution on a disk rotating in a quiescent atmosphere is parabolic (T},
= Coft2+ T..). Substituting this expression for 7', into equation {8},
and rearranging in the form of equation (9), the required empirical
constants are found to be

m = 0.25
A(Pr) = 135.7 P05

(10)

Therefm_‘e, for turbulent flow conditions, the expression for the
Stanton number for a rotating disk in a quiescent atmosphere is

Pr-04Re—027, — T.)025R0.65

St= {1

R 0.2
53.14 [ J; (Tw — T)-25R2554R

An application of this equation for temperature distributions of _
the form: T, — T'. = BR™ is discussed in reference [3].

Improved Method

Arbitrary Fluid Core Rotation and Density Variations..
Dorfman considered only the case of a disk rotating in a quiescent:
atmosphere. He defined the thermal Reynolds number as
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and the integral thermal boundary layer thickness as
Spas = j"‘" V(T — T.)dz
o WR(T,-T.)

A simple extension of Dorfman’s method can be effected by al-
lowing for arbitrary fluid eore rotation, This can be done by replacing
the wheel speed (WR) with the relative speed (WE — V.). The
thermal Reynolds number then becomes
(WR — V_)og**

»

Re** =

and the integral thermal boundary layer thickness becomes
Sper = fér V(T — T.)dz
o (WR -V NT,—Ts)
Using these forms in equation (6) and allowing for density varia-
tions, equation (11) for the Stanton number becomes

P04 Tw — T y0-25p0.25 0.2
St = T — TV ROy (12)

R 0.2
(53.14) [ J; PRIZB(WR — V)T, ~ Tm)l.ﬁst]

Beginning of Boundary Layer Growth. Dorfman assumes that
boundary layer growth begins at B = 0. This is not always the case.
A common example can be found i the compressor disk cavities of
a gas turbine engine. Mid-compressor air is bled into these cavities
for cooling purposes. The air enters at the outer diameter of the disk
cavities and exits at the bores in the center of the disks, On the disks,
a boundary layer develops which begins at the outer diameter, flows
radially inward and exits at the disk bores.

This modifies equation (12) as follows

Pr_“'4(Tw — Tm)0.25R0.25ﬂ0.2

St =
R 0.2
(53.14) [ . orrs(WR - V)T, - T,,)L%dRI
Ry

(13)

*
Ry is the radius where boundary layer growth begins.
Variations in Fluid Core Temperature. If the fluid core tem-
perature {T'..) cannot be considered a constant, equation (4) needs
to be modified

d/dR !pR j; (T — Tm)dz]

v dT. Rq
+R f Vi == dz = — 0 14
’ o ®arp ¢ cp|z=0 19

or, as In equation (44), in terms of Stanton number

1 .
R(Ty ~ T.)(WR — Vo)p d/dR(ﬂR j; VR(T - Tm)dzJ

ar dT
+R V, =
P‘I; ] R dzJ 5t (14q)

Pr04R0.35(7,, — T,,)0.25,02 exp (1.22 j‘

Substitution of assumption (7) into equation (14} will lead to a dif-
ferential equation which is no fonger separable. Tosclve the resulting
equation it is necessary to make several new assumptions.

1 Assume a shape for the radial velocity profile in the boundary

layer:
Vi = 245VR s (Z/3)¥7[1 — (Z/5)] (15)
2 Assume a shape for the temperature profile in the boundary
layer:
T'=Tp+ (Tu ~ TuMZ/8) (16)
3 Assume that the thermal boundary layer size is greater than or
equal to the momentum boundary layer size:
8 =6 a7
Using these assumptions along with equations (7) and (14)
yields
d k dT.
dR T,-—T. dR

B prh-s-i,,m(Tw — T URW ~ V. )Rm+1
A(Pr)

(18)

where

1= Rp(RW — Vo )T, —T.)br**

k is a constant arising from the integration of the product of the radial
velocity and temperature boundary layer profiles.
This equation can be solved by the introduction of an integrating

factor
dT./dR
exp !(m + 1}k f——/— dR]
T — T
Using the integrating factor, equation (18) can be integrated. Fol-
lowing the technique used to derive equation (11) yields equation
(19).

For temperature profiles whose shape is known to be different from
that assutned in equation (16), equation (19} can be changed to reflect
this by changing the constant k introduced in equation (18).

The only experimental results available are for the isothermal disk
rotating in a constant temperature environment [4). For that case,
equation (19) reduces to match the experimental results.

=

References

b Dorfman, L. A, Hydrodynamic Resistance and the Heat Loss of Rotating
Solids, pp. 87-98, Oliver and Boyd, 1963.

2 Lord, W., personal communication.

3 Harnett, J. P, Shing-Hwa Tsai, H. N. Jdantscher, “Heat Transfer to a
Nenisothermal Disk with a Turbulent Boundary Layer”, ASME JOURNAL OF
HEAT TRANSFER, Vol, 87, 1965, PR. 362-368.

4 Kreith, F. Principles of Heat Transfer, Intext Educational Publishers,
1973, pp. 404, 405

w/dR
dT./d dR)

Tw - Ts {19)

St=

(53.14) [LR pRYE(T, — T ) B(WR —-V.) exp (6.1 f
o

Journal of Heat Transfer

0.
dT./dR dR) dR] 2
Ty —Ta




